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A B S T R A C T   

Objective: Machine learning (ML) algorithms are now widely used in predicting acute events for clinical appli
cations. While most of such prediction applications are developed to predict the risk of a particular acute event at 
one hospital, few efforts have been made in extending the developed solutions to other events or to different 
hospitals. We provide a scalable solution to extend the process of clinical risk prediction model development of 
multiple diseases and their deployment in different Electronic Health Records (EHR) systems. 
Materials and methods: We defined a generic process for clinical risk prediction model development. A calibration 
tool has been created to automate the model generation process. We applied the model calibration process at four 
hospitals, and generated risk prediction models for delirium, sepsis and acute kidney injury (AKI) respectively at 
each of these hospitals. 
Results: The delirium risk prediction models have on average an area under the receiver-operating characteristic 
curve (AUROC) of 0.82 at admission and 0.95 at discharge on the test datasets of the four hospitals. The sepsis 
models have on average an AUROC of 0.88 and 0.95, and the AKI models have on average an AUROC of 0.85 and 
0.92, at the day of admission and discharge respectively. 
Discussion: The scalability discussed in this paper is based on building common data representations (syntactic 
interoperability) between EHRs stored in different hospitals. Semantic interoperability, a more challenging 
requirement that different EHRs share the same meaning of data, e.g. a same lab coding system, is not mandated 
with our approach. 
Conclusions: Our study describes a method to develop and deploy clinical risk prediction models in a scalable 
way. We demonstrate its feasibility by developing risk prediction models for three diseases across four hospitals.   

1. Introduction 

1.1. Background and significance 

Machine learning (ML) technologies have increased their usage in 
many industries in the past decade. Driven by the increases of compu
tational power, the advances of machine learning techniques, and the 
availability of standard electronic health records (EHR), the machine 
learning algorithms for clinical risk predictions are widely used in 
healthcare research and applications [1–4]. While much work has been 
done on developing distinct clinical risk prediction models, few work 

has been reported on exploration of the scalability of the prediction 
models, i.e. to extend the risk prediction model development for mul
tiple diseases over different care sites [5]. This paper discusses the 
scalability issue in clinical risk prediction model development, and 
presents a scalable approach for prediction model development that is 
applied on delirium, sepsis and acute kidney injury (AKI) covering four 
different hospitals. 

1.2. Scalability of machine learning development on EHR 

The main challenge for achieving scalable ML for clinical risk 
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prediction is the lack of a common data representation. In one dimen
sion it hinders the ease of use in different care sites. In the second 
dimension it hinders the ease of use for different clinical risk predictions. 
Scaling the development of predictive models is difficult when custom 
datasets with specific variables are required for different predictive 
models [4]. Rajkomar et al. [5] achieve both types of scalability by 
designing a single data structure based on FHIR standard [6], and 
developing different clinical scenarios over two hospitals with such a 
common data structure. While the clinical scenarios presented in [5] are 
mainly administrative scenarios, such as predicting readmissions, this 
paper presents a scalable approach that is used to develop three clinical 
risk prediction use cases respectively. This approach is also used to 
generate clinical risk prediction models in four different hospitals. This 
paper also describes the steps that are required to develop different 
clinical risk prediction models, and discusses the necessary interopera
bility between different EHRs to achieve scalability. 

1.3. The delirium use case 

Delirium is a clinical syndrome defined as an organically caused 
disturbance in attention and awareness over a short period of time, 
which has a fluctuating course [7]. While the incidence of delirium after 
general surgery ranges between 5% and 50% depending on study pop
ulations and institutions [8], it is one of the most frequent complications 
in hospitalized geriatric patients with a prevalence approaching 60% in 
elderly peoples’ and nursing homes [32]. Delirium increases the risk of 
death during hospitalization [10]. The ability to accurately predict the 
risk of a patient in developing delirium could enhance screening and 
prevention efforts. Proactive intervention reduces delirium by over 30% 
and severe delirium by over 50% [8,9]. The Confusion Assessment 
method (CAM) is recommended as a screening tool for delirium [10]. 

Several machine learning models predicting the risk of delirium have 
been reported [8,11,12], with the area under the receiver-operating 
characteristic curve (AUROC) ranging from 0.86 to 0.94. Jauk et al. 
implemented and prospectively evaluated their model in a clinical 
workflow [12]. 

1.4. The sepsis use case 

Sepsis is a life-threatening organ dysfunction caused by a dysregu
lated host response to infection [13]. If not recognized early and 
managed promptly, it can lead to septic shock, multiple organ failure 
and death. Identifying those at risk for sepsis and initiating appropriate 
treatment prior to any clinical manifestations, would therefore have a 
significant impact on the overall mortality and cost burden of sepsis 
[14,15]. The Systemic Inflammatory Response Syndrome (SIRS) criteria 
were the most widely used screening method, and Sequential Organ 
Failure Assessment (SOFA) and qSOFA (quick SOFA) are recommended 
as a replacement of SIRS to provide more accurate screening [13]. These 
methods utilize tabulation of various patient vital signs and laboratory 
results to generate risk scores; however, they do not analyse trends in 
patient data or correlations between measurements. 

Several machine learning models predicting the risk of sepsis have 
been reported that outperform the aforementioned screening methods 
[14–16]. Islam et al. reviewed existing reports on sepsis predictions and 
compared the performance (to predict sepsis 3–4 h prior to onset) be
tween traditional prediction methods with machine learning ap
proaches: the AUROC with SIRS and SOFA is 0.70 and 0.78 respectively, 
while seven different studies with machine learning algorithms achieved 
an overall pooled AUROC of 0.89 [17]. 

1.5. The acute kidney injury use case 

Acute kidney injury is a sudden decrease of kidney function which is 
a common complication that affects as many as one in five hospitalized 
patients [18,19]. It is estimated that 30% of hospital-acquired AKI is 

preventable if predicted in time. AKI is also potentially reversible if 
diagnosed and managed in time [20]. AKI is diagnosed on the basis of 
characteristic laboratory findings. The most widely used diagnostic 
criteria, based on the changes of serum creatinine, have been defined in 
2012 by the Kidney Disease Improving Global Outcomes (KDIGO) [21]. 
However, the elevation of serum creatinine lags behind renal injury, 
resulting in delayed treatment [22]. 

Several machine learning models aiming to provide early prediction 
of AKI have been reported [18,20,22]. However, these models do not 
demonstrate a clinically sufficient level of predictive performance (to 
predict AKI 24 h prior to onset), with AUROC less than 0.8. Tomašev 
et al. used a deep neural network to develop an AKI prediction model 
that demonstrated a very good performance with AUROC of 0.934 (24 h 
prior to onset), and 0.921 (48 h prior to onset) [23]. The main limitation 
of their work is that the veteran data used to train their model is not 
general enough, e.g. the female population is relatively small in their 
dataset. 

2. Objective 

The first objective of this study is to develop clinical risk prediction 
models that can be integrated into a production EHR system in clinical 
settings. Each model identifies inpatients with a high risk of developing 
the disease during their hospital stay. The risk prediction is triggered at 
admission, as well as during the patient stay whenever new observations 
are available. 

The application of machine learning predictions in a clinical setting 
often faces trust issues because the prediction systems are complex and 
operate like a ‘blackbox’ to the end users [2]. Our second objective is to 
support decision making and increase the confidence of the end users by 
providing explanations to the predicted results. 

The last objective of this study is to introduce a scalable approach for 
prediction model development and its integration in production EHR 
systems. A scalable approach would reduce the effort in clinical risk 
prediction model development by designing a common, reusable model 
development procedure. Moreover, productizing the development pro
cedure as a toolkit would further reduce the cost to generate prediction 
models at different care sites based on local data structure. 

3. Materials and methods 

The scalability of developing and deploying different clinical risk 
prediction models has two aspects:  

• First, the scalability to extend the risk prediction model from one 
disease to another.  

• Secondly, the scalability to extend the application of clinical risk 
prediction from one hospital to another. 

This section explains how we reach these two types of scalabilities, as 
well as the other objectives that were defined in the objective section. 

3.1. A scalable method to develop different clinical risk prediction models 

A common data structure is the prerequisite to develop different 
clinical risk prediction models in a scalable way. The work presented in 
[5] designed a single data structure based on FHIR standard, and 
developed different clinical scenarios with such a common data struc
ture. The scalable clinical risk prediction model development presented 
in this paper does not rely on a formal standard to represent the source 
data, rather, it keeps such a requirement on a minimum level: the source 
data consists of a set of csv (comma-separated values) tables, where the 
names of tables and columns are predefined to provide corresponding 
content for features of the prediction models. 

A common set of feature groups is fixed as input to train prediction 
models for different diseases. We use the following feature groups: 
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• Gender  
• Age group  
• Admission type  
• Department of stay  
• History of diagnoses  
• Lab results  
• Vital signs  
• Medications  
• Named clinical entities (extracted from clinical notes) 

In order to avoid the potential introduction of leaking information, 
diagnosis codes and procedure codes assigned during patient stay are 
not used as features. Discharge letters that are only available at 
discharge stage are also excluded to avoid potential leaking information. 
The three use cases presented in this paper are all about risks of an acute 
event, therefore, diagnosis codes assigned in previous patient stays are 
still used to construct the diagnosis history feature without removing 
any use case relevant diagnosis. 

Fig. 1 shows a generic method to develop different clinical risk 
prediction models. First, common data preparation is applied to the 
source data, to generate features that a machine learning model can 
understand. For example, the age at admission is calculated by checking 
the year difference between birthday and admission day, which is then 
further binned into age groups. The common data preparation is using 
all the available data that is generated during a patient stay. In addition, 
exclusion criteria are applied in order that patients younger than 18 or 
records with missing basic information are excluded. 

Free-text clinical notes, such as admission letters or nursing notes, 
contain valuable information for clinical risk prediction, and are still not 
commonly used in most clinical risk prediction models. In [5], clinical 
notes are used together with other features as inputs of the prediction 
model, however, when their models are applied at two different sites, 
the site without clinical notes even delivers better performance than the 
site providing clinical notes. Rather than feeding the prediction model 
with the raw clinical notes, we extract named clinical entities from 
clinical notes, and feed them as features to our prediction models. 
Clinical entities are extracted from clinical notes using two approaches: 
in the first approach, we first prepare a set of clinical short phrases that 
are relevant to the use cases, and then we apply text search to find the 

phrases in the clinical notes, and return the matched ones as clinical 
entities; in the second approach, we train a BERT [34] named entity 
recognition model on German clinical notes, and apply this model on 
clinical notes to do named entity recognition. Clinical entities extracted 
by both approaches are merged and used as our clinical entity feature. 

Measurements with continuous values, such as lab results, are 
normalized by assigning an interpretation based on reference values: 
low, normal or high. For very frequent measurements, such as vital 
signs, there is an additional normalization based on the number of each 
interpretation, to indicate the frequency group. 

Common data preparation generates a set of features that are ready 
to be used in model training. However, use case specific data prepara
tion is still needed to prepare the dataset for model training. First, a 
labeling process assigns the labels for each specified use case. The la
beling process is based on the ICD codes assigned to each patient stay at 
discharge. The list of ICD codes corresponding to each of the three use 
cases are listed in Appendix A. Secondly, the features prepared in 
common data preparation may contain data that occurred after the onset 
of the disease. Such leaking information related to the disease to predict 
should be removed. The definition of leaking feature varies between 
different risk prediction use cases. Appendix B provides the definition of 
leaking features for each of the three use cases. Finally, the labelled data 
are split patient-wise into train and test and evaluation datasets for 
model training. 

Prediction models for different clinical use cases are trained using the 
same model training strategy: we use Transformer (Tensor2Tensor) [24] 
to train a binary classification model for clinical risk prediction. We 
concatenate the features as inputs, and use the labels as targets for the 
model training process. We first aggregate all the available information 
belonging to the same hospital stay to get a complete training record. We 
also cope with the situation where the model is requested to make 
predictions in the early stage of a patient stay, when less information is 
available. For that we apply data augmentation to generate a partial 
record in combination with the complete record, to enhance the 
robustness of the clinical risk prediction model. Table 4 in Appendix F 
shows that with data augmentation the performance of the delirium 
prediction model is significantly better at the admission time. The 
training process is repeated to generate a specific prediction model for 
each clinical risk prediction use case. 

Fig. 1. A scalable method to develop risk prediction model for different clinical use cases.  
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Model evaluation for the different use cases is also carried out in a 
unified procedure by performing predictions on the evaluation data set 
and doing an evaluation of the predicted results. The metrics such as 
AUROC, sensitivity, specificity, precision, etc. are calculated to generate 
an evaluation report. Metrics for different departments are also gener
ated. The importance of different feature groups are also evaluated by 
checking the impact on the AUROC when a feature group is masked out. 
Similar to the model training process, the model evaluation process is 
also repeated to generate a model evaluation for each clinical risk pre
diction use case. 

3.2. A scalable method to generate clinical risk prediction models at 
different hospitals 

Ultimately, the goal of developing a clinical risk prediction model is 
to deploy the developed model to a production system so that risk pre
dictions are made in real time. A prediction model can be developed 
either at a development site or directly at the target hospital site. Both 
approaches have certain advantages and disadvantages:  

• Developing a prediction model at a development site that uses data of 
a reference hospital, and deploying the model at another target 
hospital is convenient for model development. However, it may have 
degraded performance due to the difference between the data at the 
development site and the target hospital. Such a degradation would 
become more severe when there is a difference in vocabulary, e.g. 
between different lab coding systems.  

• Developing a prediction model at a target hospital site produces a 
model that fits the data characteristics of the target hospital and 
avoids the aforementioned performance degradation. However, due 
to privacy concerns, there are often constraints to access the EHR 
data of a target hospital for model development. In addition, such a 
process lacks scalability; the model development process needs to be 
repeated at the different target hospitals. 

Our solution combines the advantages of both approaches, and 
overcomes their disadvantages by carrying out model development at a 
development site, and applying model calibration at target hospitals. It 
is therefore convenient to carry out the model development, meanwhile 
still produce site specific prediction models. Fig. 2 shows our scalable 
method to generate risk prediction models at different hospitals. A 
development site is selected according to the following criteria: a. The 
scope and quality of the data for intended use case; b. The site has a 
special interest in the intended use case; c. The validation process can be 
actively supported by medical staff of the site; d. The consent of the data 

protection officer for the use of anonymized patient data for training the 
model is available. 

The initial model development is carried out at the development site 
according to the scalable model development method presented in 
Fig. 1. A toolset is then developed to automate the process of model 
development. We name this tool the calibration tool where ‘calibration’ 
refers to the generation of prediction models at a target hospital, based 
on their particular data. The calibration tool is delivered as a Docker 
image. It does not only contain the data preparation and model cali
bration scripts, but also the needed dependencies such as the required 
TensorFlow version. 

At the target hospital the model calibration process starts with the 
extraction of source data from the production EHR system. The extracted 
source data follows the predefined source data formats. Once the source 
data is extracted, the calibration tool is executed to prepare features for 
model training, as well as to generate site-specific prediction models. 
The calibration tool starts with source data analysis to detect abnor
malities in the source data. It also automatically adapts, as well as allows 
manual modification of, the hyperparameters for the model training 
process. The generated model is trained on the data of the hospital, and 
therefore considered calibrated with the EHR data of the hospital. The 
generated models are automatically evaluated, and acceptance criteria 
are also checked during the model evaluation process. 

The generated prediction models that pass the acceptance criteria are 
used by the prediction service and integrated with the EHR system to 
provide timely predictions in the production system. The communica
tion between the EHR system and the prediction service, i.e. the pre
diction request and prediction response, are constructed using the 
RiskAssessment resource of the FHIR Clinical Module. Other relevant 
FHIR resources are used to represent the relevant clinical patient data in 
the risk assessment. Appendix C provides an excerpt of a sample FHIR 
risk assessment. 

3.3. Visualized explanations for predicted results 

The acceptance of the predictions made by machine learning in 
clinical practice is often hindered when an explanation of the predicted 
result is missing. Vaswani [24] and Vig [25] made visualizations of 
multi-head attentions, i.e. the impact of each token of the input text on 
each token of the output text. Ribeiro et al. introduced the concept of 
Local Interpretable Model-agnostic Explanations (LIME) to identify the 
impact of input features to a model over multiple partial representa
tions, that is locally faithful to the classifier [26]. We adopted the 
concept of LIME to evaluate the impact of each input feature on the 
predicted result, and visualized the impact of the most influential 

Fig. 2. A scalable method to generate risk prediction models at different hospitals.  

H. Sun et al.                                                                                                                                                                                                                                     



Journal of Biomedical Informatics 118 (2021) 103783

5

features as explanations to the predicted result. 
Fig. 3 shows the screenshot of an example of visualized explanation 

of a sample patient record in German with moderate risk of developing 
delirium. Based on the risk score, a prediction is classified as low risk 
(score < 0.5), moderate risk (0.5 ≤ score ≤ 0.75) or high risk (score >
0.75). The left pane of Fig. 3 shows the top 10 features that contributed 
to the prediction of delirium. The features are already normalized after 
data preparation, e.g. lab results are normalized as high or low, and 
clinical entities are extracted from documents. The right pane shows the 
original source of the features displayed in the left pane. We expect the 
visualized explanations to provide enough details to the physicians, so 
that they can build confidence in the predicted results. 

4. Results 

4.1. Implementations 

We started with developing the delirium risk prediction model at our 
development site. We then developed the sepsis risk prediction model 
based on the existing scripts for delirium prediction development. The 
scripts were further adapted following the method presented in Fig. 1, to 
provide a generic approach for risk prediction model development. The 
calibration tool was developed thereafter and was executed at the target 
hospitals to generate site specific prediction models for delirium and 
sepsis respectively. The AKI risk prediction model was later developed 
following the generic model development approach, and the calibration 
tool was extended to include the AKI model generation. 

Risk prediction models for delirium, sepsis, and AKI were generated 

Fig. 4. Screenshot of the clinical risk prediction in production EHR system.  

Fig. 3. Visualized explanations for predicted result.  
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by our calibration tool at four different German hospitals: Mar
ienhospital Stuttgart, containing EHR data from 2004 to 2020, HDZ Bad 
Oeynhausen, containing EHR data from 2009 to 2020, Alexianer Kre
feld, containing EHR data from 2014 to 2020, Medius Klinik Nürtingen, 
containing EHR data from 2009 to 2020. We refer to these four hospitals 
as Hospital M, Hospital H, Hospital K and Hospital N respectively. The 
data used for model training and evaluation is anonymized and 
approved by the data protection officer of each hospital. All four hos
pitals use the ORBIS® EHR system of Dedalus Group. Except for the 
clinical notes, the data source for the other features were stored in the 
same structured tables over these four different sites. The data source 
extraction script was therefore adapted to cover the different storage of 
the clinical notes. In addition, lab tests and vital signs are using different 
coding systems in these four sites, but our calibration tool is designed to 
be agnostic about the heterogeneity of different coding systems, and 
does not require manual mapping to a common coding system. 

The target of our clinical risk prediction service is to continuously 
provide clinical risk predictions during a patient stay when new clinical 
data is available. The prediction models generated in Hospital M and 
Hospital H have already been connected to their production EHR system 
in a controlled setting, to allow stepwise progression and feedback. 
Fig. 4 shows the screenshot of displaying the alerts from the prediction 
services in a production EHR system. Alerts indicating risks of delirium, 
sepsis and AKI are displayed in a clinical station view in the upper pane. 
The alert coloured in yellow indicates a moderate risk (0.5 ≤ score ≤
0.75), and the alert coloured in red indicates a high risk (score > 0.75). 
Explanations of each alert is displayed in the lower left pane, this 
screenshot shows the example of explanations for a sepsis alert. The 
treating physician can resolve an alert together with feedback about 
benefit and (dis)continuation in the right lower pane. 

The prediction service integrated with the production EHR system 
provides timely predictions. In the production system that is not using 
GPUs and is only using CPUs, the prediction service can process the 
records of a patient and make a corresponding prediction within one 
second most of the time. In one of our load tests, we test the performance 
of our prediction service with 15 threads on a 4 core CPU-only server. In 
the test, the prediction service reads FHIR risk assessments belonging to 
a patient (with 81 FHIR resources including 13 clinical notes), processes 
these FHIR resources, and makes a corresponding prediction: the aver
aged prediction response time is 261 ms for delirium prediction service. 
The required time to process the records and make a prediction heavily 
depends on the length of patient records, particularly the size of free text 
clinical notes. Almost 90% of the data processing time is consumed by 
processing the free text clinical notes, where a pretrained TinyBERT 
model is used to perform named entity recognition. Once the data is 
processed, our prediction model on average takes less than 30 ms to 
make a prediction. 

4.2. Model performance 

This paper presents the model performance with retrospective data, 
by the end of the admission day, as well as by the end of the stay, with 
leaking information excluded. Patients records were randomly split into 

train (80%) and test (20%) datasets. Table 1 shows the AUROC of the 
three different prediction models on the test datasets over different 
stages at four hospitals. The AUROC is lower at the admission day, 
largely due to the limited data available for prediction at the beginning 
of the hospital stay. As the stay proceeds, more clinical data becomes 
available in the EHR system; consequently, the AUROC improves, 
reaching around 10 percent increase at discharge. The characteristics of 
the training set at these four hospitals on the three different use cases are 
enclosed in Appendix D. We also investigated the importance of each 
feature group in our trained models based on occlusion analysis [27], by 
checking the impact on the AUROC when a feature group is masked out. 
The named clinical entities are the most influential feature group in 
delirium prediction (the impact on AUROC is approximately 8 percent), 
while the lab results have the greatest impact on sepsis and AKI pre
diction (the impact on AUROC is approximately 6 percent and 7 percent 
respectively). A detailed evaluation of the importance of each feature 
group on the three different use cases over the four sites is provided in 
Appendix E. We also compared the performance of a delirium prediction 
model trained in the development site with the delirium prediction 
model generated with the calibration process at HDZ. Their metrics are 
compared in Table 4 of Appendix F, it shows the model generated with 
the calibration process has much better performance, especially at the 
admission day. Such a comparison confirms the necessity to apply 
calibration at the deployment site. Nevertheless, the model trained at 
the development site still achieved fair results at the deployment site at 
the day of discharge, this provides the possibility to investigate possible 
improvement with transfer learning, that is to start the calibration 
process based on the model trained at the development site, rather than 
from scratch. 

It is observed that the difference in AUROC between admission and 
discharge is larger in hospital H compared with the other three hospitals, 
particularly in the delirium use case. This is due to the fact that hospital 
H is specialized in heart disease and diabetes, with a much larger pro
portion of heart surgeries. A patient stay in hospital H is on average 
twice longer than the other three hospitals. Consequently, the gap be
tween averaged length of patient record at discharge and at admission in 
hospital H is much larger, particularly for textual information such as 
clinical notes. Since the named clinical entity from clinical notes is the 
most influential feature in the delirium use case, the lack of clinical notes 
data at the admission day in hospital H decreases the AUROC. 

The AUROC in hospital K is lower compared with the other three 
hospitals. Hospital K is a smaller hospital specialized in psychiatry. In
formation for training was limited. First, without intensive care, which is 
associated with high rates of delirium, sepsis and AKI, the number of 
positive cases for training was significantly reduced. Secondly, the 
dataset did not include medication or vital signs, as these had not been 
recorded in the EHR system. Thirdly, only 6 years of patient records 
could be provided, which is relatively small compared with other 
datasets. Nevertheless, even with these limitations, the prediction model 
in hospital K still has satisfactory results. This shows the presented 
scalable approach is capable of developing meaningful prediction 
models when limited data is available. 

Table 1 
Area under the receiver-operating characteristic curve (AUROC) with 95% confidence intervals (CI), over different stages of hospital stay on the test datasets of the four 
different hospitals, for three different clinical use cases.  

Hospital DELIRIUM SEPSIS AKI 

admission AUROC (CI 
95%) 

discharge AUROC (CI 
95%) 

admission AUROC (CI 
95%) 

discharge AUROC (CI 
95%) 

admission AUROC (CI 
95%) 

discharge AUROC (CI 
95%) 

M 84.57% [84.3–84.8] 96.74% [96.6–96.9] 87.14% [86.9–87.4] 96.48% [96.3–96.6] 87.20% [87.0–87.4] 93.41% [93.2–93.6] 
H 75.20% [74.7–75.7] 98.03% [97.9–98.2] 82.67% [82.3–83.1] 96.17% [96.0–96.4] 80.37% [79.9–80.8] 95.75% [95.5–96.0] 
K 83.19% [82.7–83.6] 92.57% [92.2–92.9] 85.39% [85.0–85.8] 93.91% [93.6–94.2] 83.90% [83.5–84.3] 89.18% [88.8–89.6] 
N 85.26% [85.0–85.5] 93.09% [92.9–93.2] 89.32% [89.1–89.5] 95.55% [95.4–95.7] 83.65% [83.4–83.9] 88.09% [87.9–88.3] 
avg 82.05% 95.11% 88.23% 95.53% 85.43% 91.60%  
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5. Discussion 

5.1. Interoperability 

The scalable approach for developing clinical risk prediction models 
presented in this paper is relying on data interoperability: a common 
representation of source data between different hospitals and a common 
representation of features for different prediction models. There are 
different levels of clinical data interoperability: syntactic interopera
bility, that guarantees the smooth data transition between different EHR 
system by representing data with a common structure; and semantic 
interoperability that guarantees the common understanding between 
different EHR systems by representing data with a common semantic 
[28,29]. While the syntactic interoperability is easier to reach by rep
resenting data in a common structure, the semantic interoperability is a 
much more challenging task. It requires that clinical data in different 
EHR systems share the same meaning, by using common coding systems, 
and clinical terminology mapping between different coding systems is 
needed [30]. 

Reaching semantic interoperability could benefit the clinical risk 
prediction model development. A model trained at a development site 
could understand the input features from a target hospital to make a 
prediction, and therefore be deployed directly. In addition, once the 
features in the development site and the target hospital share the same 
semantics, it is then more efficient to apply transfer learning: after 
developing a prediction model using data at the development site, 
continue with model training with training data from the target hospital 
to enhance the model performance at that target hospital. This is helpful 
for target sites that have limited training data [5]. Although reaching 
semantic interoperability has the aforementioned benefits, according to 
our previous experience [28,30], it also comes with substantial costs to 
create the required semantic mappings. With the target of developing a 
scalable approach with affordable cost, we put minimum requirements 
for interoperability. 

We require the source data for training to be prepared as csv files 
with predefined names of tables and columns. This constitutes a mini
mum level of syntactic interoperability to cover for data structure dif
ferences over different hospitals. We use such simple common csv files to 
format the source data, rather than popular clinical data standards such 
as FHIR [6] or OMOP [31], for the sake of reducing the cost of source 
data preparation. Mapping source data to a clinical data standard re
quires much work, and such an effort is repeatedly required when 
developing clinical risk predictions at a new hospital. With our 
approach, source data is extracted and represented with the predefined 
format of csv tables. It can be easily implemented with SQL scripts or 
other similar methods, and adapted to the data structure of each target 
hospital. 

While the source data is represented with simple common csv files, 
we still rely on clinical standards as the interface to our prediction ser
vice. We use the RiskAssessment resource of the FHIR Clinical Module to 
construct the prediction request and response, as a means to commu
nicate between the EHR system and the prediction service. The FHIR 
resources are used to represent relevant clinical data. Using a standard 
messaging format improves the reusability of the prediction services 
over different EHR systems. Since FHIR has gained in popularity and is 
increasingly adopted by the healthcare industry [33], relying on FHIR 
messaging to communicate between EHR systems and our prediction 
service is considered as the most efficient, future-proof solution. 

5.2. Open choices of implementations 

This paper intends to present a scalable approach for risk prediction 
development, as well as the deployment at different hospitals. We take 
the use case of delirium, sepsis and AKI to demonstrate the scalability of 
our approach. Therefore, we consider the choices that we made in our 
implementation are among many possible solutions. For example, in the 

delirium risk prediction, Gonzalvo [9] excluded patient with delirium at 
admission, Kim [8] considered history of prior delirium as a predictor of 
delirium, and Jauk [12] assigns the highest risk score to patient with a 
history of delirium. We neither exclude any historical diagnosis, nor 
exclude any patient with a history of the disease to predict because all 
these three use cases are predicting the risk of an acute disease. We 
evaluated the impact of each feature group in each prediction model, 
and summarized the results in Table 3 of Appendix E. This table shows 
many of such choices, e.g. the inclusion vs. exclusion of use case related 
historical diagnosis, will not bring much impact to the metrics of the 
final model because the corresponding feature group has a low impact 
on the trained model. In the meantime, we are also continuously 
improving our solutions by optimizing our implementation choices. The 
current architecture of our prediction model, together with the hyper 
parameters are provided in Appendix G. 

5.3. Limitations 

The presented scalable model development approach relies on 
common feature preparation and similar labeling strategy. The common 
features that we prepared were sufficient for the three risk prediction 
use cases presented in this paper. Nevertheless, we also foresee that 
additional feature processing will be required for other more complex 
clinical risk prediction use cases. Similarly, more precise labeling urges 
for more sophisticated labeling methods than ICD codes only. In prin
ciple, such extensions can be made by extending the common feature 
preparation, or applying use case related adaptations. Although our 
approach is scalable, it should not be considered as being generic to 
develop prediction models for every disease; rather, it is meant as being 
generic to develop a set of clinical risk prediction models with similar 
behavior. 

The scalable approach for developing clinical risk prediction models 
presented in this study was implemented in four different hospitals that 
were all using ORBIS® EHR systems. It was not yet tested in hospitals 
with different EHR systems. However, since only a minimum level of 
interoperability is expected, we consider our calibration process as 
feasible across various EHR systems. 

The results presented in this paper are based on retrospective data. 
Our prediction models are now connected to two production EHR sys
tems. A thorough evaluation of the prediction models in these produc
tion systems is now ongoing and the outcome will be delivered in a 
separate paper. 

6. Conclusions 

Clinical risk prediction applications built with machine learning 
technologies are now widely used in clinical research and applications. 
Most of the clinical risk prediction applications are dedicated to pre
dicting the risk of one disease, and the development process is often 
based on the characteristics of the patient records retrieved from a single 
hospital. Developing a clinical risk prediction model is often a time- 
consuming task that involves feature engineering, model training and 
model evaluation. Developing a clinical risk prediction model using 
deep learning technology based on a single site is more vulnerable to 
overfitting. Since such a prediction system is often complex and operates 
like a ‘blackbox’, it makes biases, such as overfitting, difficult to detect. 
In addition, a clinical risk prediction model that is over-specialized on a 
single site lacks the scalability to be applied on other hospitals, which is 
a waste of development efforts. 

We present a scalable approach for developing, calibrating and 
deploying clinical risk prediction models in different hospitals, so that 
the efforts in model development can be reused. Such an approach re
duces the risk of overfitting by applying a generic development pro
cedure across different sites. It also aims to build trust from physicians 
by introducing visualized explanations for predictions. The model 
development process is reused in developing prediction models for 
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different diseases by sharing a set of common features for predictions, as 
well as a common strategy for labeling and model training. The model 
generation and deployment in different hospitals are relying on our 
calibration tool, in combination with a minimal level of requirements on 
data interoperability. The presented scalable approach has been used to 
develop delirium, sepsis, and AKI risk prediction services, and it is used 
to generate and deploy prediction models at four different German 
hospitals. While detailed evaluation of the models in clinical settings is 
still ongoing, this paper presents performance evaluation with retro
spective data, which shows satisfactory and promising results. 
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Appendix A:. ICD codes for disease labeling 

ICD codes for delirium labeling  

• F05: Delirium, not induced by alcohol and other psychoactive 
substances  
o F05.0: Delirium not superimposed on dementia, so described  
o F05.1: Delirium superimposed on dementia  
o F05.8: Other delirium  
o F05.9: Delirium, unspecified  

• F1x.4: Mental and behavioural disorders due to […]. Withdrawal 
state with delirium.  
o F10.4: Mental and behavioural disorders due to use of alcohol, 

Withdrawal state with delirium  
o F11.4: Mental and behavioural disorders due to use of opioids, 

Withdrawal state with delirium 
o F12.4: Mental and behavioural disorders due to use of cannabi

noids, Withdrawal state with delirium  
o F13.4: Mental and behavioural disorders due to use of sedatives or 

hypnotics, Withdrawal state with delirium  
o F14.4: Mental and behavioural disorders due to use of cocaine, 

Withdrawal state with delirium  
o F15.4: Mental and behavioural disorders due to use of other 

stimulants, including caffeine, Withdrawal state with delirium 
o F16.4: Mental and behavioural disorders due to use of hallucino

gens, Withdrawal state with delirium  
o F17.4: Mental and behavioural disorders due to use of tobacco, 

Withdrawal state with delirium  

o F18.4: Mental and behavioural disorders due to use of volatile 
solvents, Withdrawal state with delirium  

o F19.4: Mental and behavioural disorders due to multiple drug use 
and use of other psychoactive substances, Withdrawal state with 
delirium  

• It is assumed that the F10.4-F19.4 codes do not occur together with 
F05 codes, as this is part of the ICD code definition. 

ICD codes for sepsis labeling  

• Codes limited to sepsis or close to sepsis, e.g. generalized infection 
(use these as sepsis labels)  
o A02.1: Salmonella sepsis  
o A20.7: Septicaemic plague  
o A21.7: Generalized tularaemia  
o A22.7: Anthrax sepsis  
o A24.1: Acute and fulminating melioidosis  
o A26.7: Erysipelothrix sepsis  
o A28.0: Pasteurellosis  
o A32.7: Listerial sepsis  
o A33: Tetanus neonatorum < 18  
o A39.1: Waterhouse-Friderichsen-Syndrom  
o A39.2: Akute Meningokokkensepsis  
o A39.3: Chronische Meningokokkensepsis  
o A39.4: Meningokokkensepsis, nicht näher bezeichnet  
o A40: Streptococcal sepsis  
o A41: Other sepsis  
o A42.7: Actinomycotic sepsis  
o A48.0: Gasbrand [Gasödem]  
o A48.3: Syndrom des toxischen Schocks  
o B00.7: Disseminated herpesviral disease  
o B37.7: Candidal sepsis  
o B44.7: Disseminierte Aspergillose  
o I33.0: Akute und subakute infektiöse Endokarditis  
o M86.0: Acute haematogenous osteomyelitis  
o O85: Puerperal sepsis  
o O88.3: Obstetric pyaemic and septic embolism  
o P36: Bacterial sepsis of newborn < 18  
o R57.2: Septic shock  
o R65: Systemic Inflammatory Response Syndrome  

• Codes including, but not limited to sepsis  
o G08: Intracranial and intraspinal phlebitis and thrombophlebitis  
o J95.0: Funktionsstörung eines Tracheostomas  
o O08.0: Infektion des Genitaltraktes und des Beckens nach Abort, 

Extrauteringravidität und Molenschwangerschaft  
o O75.3: Other infection during labour  
o T81.4: Infektion nach einem Eingriff, anderenorts nicht 

klassifiziert  
o T88.0: Infection following immunization  

• Other codes that may be entered in case of sepsis (still high-risk)  
o A03: Shigellose [Bakterielle Ruhr]  
o A23: Brucellose  
o A28.2 Extraintestinale Yersiniose  
o A39: Meningokokkeninfektion  
o A48.4: Brazilian purpuric fever  
o A54.8: Sonstige Gonokokkeninfektionen  
o H44.0: Purulente Endophthalmitis  
o I40.0: Infective myocarditis  
o O07.0: Misslungene ärztliche Aborteinleitung, kompliziert durch 

Infektion des Genitaltraktes und des Beckens 
o O07.5: Misslungene sonstige oder nicht näher bezeichnete Abor

teinleitung, kompliziert durch Infektion des Genitaltraktes und des 
Beckens  

o O08.2: Embolie nach Abort, Extrauteringravidität und 
Molenschwangerschaft 
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o T80.2: Infections following infusion, transfusion and therapeutic 
injection  

o T82.6: Infektion und entzündliche Reaktion durch eine 
Herzklappenprothese  

o T82.7: Infektion und entzündliche Reaktion durch sonstige Geräte, 
Implantate oder Transplantate im Herzen und in den Gefäßen  

o T83.5: Infektion und entzündliche Reaktion durch Prothese, 
Implantat oder Transplantat im Harntrakt  

o T83.6: Infektion und entzündliche Reaktion durch Prothese, 
Implantat oder Transplantat im Genitaltrakt  

o T84.5: Infektion und entzündliche Reaktion durch eine 
Gelenkendoprothese  

o T84.6: Infektion und entzündliche Reaktion durch eine interne 
Osteosynthesevorrichtung [jede Lokalisation]  

o T84.7: Infektion und entzündliche Reaktion durch sonstige 
orthopädische Endoprothesen, Implantate oder Transplantate  

o T85.7: Infektion und entzündliche Reaktion durch sonstige interne 
Prothesen, Implantate oder Transplantate  

• Other high-risk codes  
o G00-G09: Inflammatory diseases of the central nervous system  
o It is assumed that the F10.4-F19.4 codes do not occur together 

with F05 codes, as this is part of the ICD code definition. 

ICD codes for AKI labeling  

• N14.-: Drug- and heavy-metal-induced tubulo-interstitial and tubular 
conditions  
o N14.1: Nephropathy induced by other drugs, medicaments and 

biological substances  
o N14.2: Nephropathy induced by unspecified drug, medicament or 

biological substance  
• N17.-: Acute renal failure  

o N17.0: Acute renal failure with tubular necrosis  
o N17.1: Acute renal failure with acute cortical necrosis  
o N17.2: Acute renal failure with medullary necrosis  
o N17.8: Other acute renal failure  
o N17.9: Acute renal failure, unspecified  

• N19: Unspecified kidney failure  
• N99.-: Postprocedural renal failure  
• R34: Anuria and oliguria  
• R94.4: Abnormal results of kidney function studies 

Appendix B:. Disease specific leaking features 

Leaky features are features that contain information about the label. 
Including leaky features causes suboptimal training. The following fea
tures are removed from the data for each use case: 

Delirium:  

• Any named clinical entity features containing subword DELIR 

Sepsis: 

• Any named clinical entity features containing SEPSIS, SEPTIC, SEP
TISCH or SIRS  

• Any lab result containing IL_6 or starting with PROCALC 

AKI:  

• Any named clinical entity features matching regular expression: 

NIEREN|ANURIE|FUROSEMID|URINAUSSCHEIDUNG|KARDIO. 
*RENAL*SYNDROM|HAEMOFILTRATION|NEPHRITIS|A(C|K)UT. 
*?NIEREN|ANURIE|ORGAN_FAILURE|(KARDIO|HEPATO).? 
RENAL.{0,5}SYNDROM|HAEMOFILTRATION|KREA.*| 
HARNSTOFF  

• Any lab result matching regular expression: 
HARNSTOFF|KREA.*|HARNSAEURE|KRISTALLE|PATH.*ZYLIN
DER|HEFEZELLEN|RUNDEPITHELIEN|MICROALB 

There are still potential leaks in medication, which are not yet 
considered in our leaking feature. This is because currently only two out 
of the four hospitals provided medication data, both are not coded in 
ATC and both have limited impact on our prediction models (see Ap
pendix E). We plan to map the medication names to ATC code as our 
future work, and potential leaking information in medication will also 
be removed by checking the ATC code. 

Appendix C:. Excerpt of sample risk assessment in FHIR 

{ 
“resourceType”: “RiskAssessment”, 
“id”: “case002′′, 
“contained”: [ 

{ 
“resourceType”: “Person”, 
“id”: “1′′, 
“gender”: “female”, 
“birthDate”: “1964-01-01′′

}, 
{ 

“resourceType”: “Condition”, 
“id”: “4′′, 
“category”: [ 

{ 
“coding”: [ 
{ 
“system”: “http://hl7.org/fhir/ValueSet/condition-cat 

egory”, 
“code”: “problem-list-item” 

} 
] 
} 

], 
“code”: { 
“coding”: [ 

{ 
“system”: “http://hl7.org/fhir/ValueSet/icd-10′′

“code”: “F10.0′′, 
“display”: “F100′′

} 
] 
}, 
“onsetDateTime”: “2019-10-21 T15:07:22′′

} 

Appendix D:. Characteristics of training datasets 

Table 2 lists the characteristics of training datasets of the three use 
cases in the four hospitals respectively. Each training dataset has a 1:1 
balance between records with the targeted disease and those without. 
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Appendix E:. Importance of each feature group 

Table 3 evaluates the importance of each feature group in our trained 
models based on occlusion analysis [27], by checking the impact on the 
AUROC when a feature group is masked out in the test set. The row of 
original AUROC without dropping features shows the AUROC of the test 
set at discharge. Delta to original AUROC after dropping feature shows 
the gap between the AUROC after masking out each of the indicated 
feature groups and the original AUROC. A negative value indicates after 
dropping the feature group in the testing set, the model performs worse. 
The smaller this delta value is, the greater impact the corresponding 
features group has on the prediction model. A positive value indicates 
after dropping this feature group in the test set, the model even performs 

better, this is likely due to the overfitting during the training. 

Appendix F:. Impact of data augmentation and model 
calibration 

Table 4 shows the impact of our data augmentation policy and 
calibration by comparing the performance of several delirium risk pre
diction models at HDZ. The baseline is a model calibrated in HDZ 
following the scalable model development process with data augmen
tation applied, its metrics are also presented in Table 1. The second 
model is a model calibrated in HDZ, but without applying data 
augmentation. The third model is a model trained at the development 
site, and evaluated at HDZ without model calibration. 

Table 3 
Importance of each feature group.  

Use case Delirium Sepsis AKI 

Hospital name M H K N M H K N M H K N 

Original AUROC without dropping feature (%) 96.74 98.03 92.57 93.09 96.48 96.17 93.91 95.55 93.41 95.75 89.18 88.09 
Delta to original AUROC after dropping feature (%):             
-Gender − 0.00 − 0.06 − 0.10 − 0.07 − 0.04 − 0.00 +0.04 +0.01 − 0.00 − 0.01 − 0.09 +0.01 
-Age group − 0.00 − 0.06 − 0.41 − 0.63 − 0.08 − 0.07 +0.09 +0.02 − 0.25 − 0.05 − 0.76 − 0.89 
-Admission type − 0.03 − 0.02 − 0.08 − 0.07 − 0.18 − 0.03 − 0.02 − 0.07 − 0.12 − 0.00 − 0.10 +0.06 
-Department of stay +0.06 − 0.15 − 0.89 − 0.12 +0.13 − 0.30 − 0.39 − 0.23 − 1.12 − 0.22 − 1.13 − 0.11 
-History of diagnosis − 0.18 − 0.11 − 0.91 − 0.62 − 0.12 − 0.25 − 0.46 +0.07 +0.04 − 0.18 − 0.65 − 0.22 
-Medications nan − 0.07 nan − 0.03 nan − 0.04 nan − 0.10 nan − 0.13 nan +0.01 
-Lab results − 0.90 − 1.17 − 2.19 − 3.38 − 4.39 − 4.07 − 8.86 − 6.38 − 7.55 − 5.39 − 9.21 − 5.30 
-Vital signs − 0.01 − 0.03 nan − 0.31 − 0.04 − 0.20 nan − 0.08 +0.11 − 0.04 nan − 0.00 
-Named clinical entities − 13.85 − 4.23 − 7.82 − 7.93 − 2.32 − 1.64 − 1.99 − 1.07 − 1.83 − 0.25 − 0.42 − 0.86  

Table 2 
Characteristics of training datasets.  

Use case Delirium Sepsis AKI 

Hospital name M H K N M H K N M H K N 

Number of records 19,230 6456 13,896 46,218 18,600 13,764 8256 37,704 62,766 33,198 15,582 116,670 
Demographics             
-Age, median 61.3 66.0 66.4 64.8 60.1 64.8 65.9 63.8 60.3 65.1 65.8 64.0 
-Female sex, no, (%) 10,492 

(55%) 
2062 
(32%) 

7082 
(51%) 

24,243 
(53%) 

10,343 
(56%) 

4424 
(32%) 

4151 
(50%) 

19,663 
(52%) 

35,246 
(56%) 

11,064 
(33%) 

7887 
(51%) 

61,393 
(53%) 

Admission type, no, (%)             
-normal admission 9900 

(52%) 
5768 
(89%) 

6095 
(44%) 

21,147 
(46%) 

9635 
(52%) 

12,233 
(89%) 

3542 
(43%) 

17,087 
(45%) 

34,221 
(55%) 

29,539 
(89%) 

6826 
(44%) 

55,359 
(47%) 

-emergency admission 9249 
(48%) 

611 
(10%) 

7772 
(56%) 

24,816 
(54%) 

8873 
(48%) 

1387 
(10%) 

4701 
(57%) 

20,418 
(54%) 

28,239 
(45%) 

3288 
(10%) 

8722 
(56%) 

60,662 
(52%) 

History of diagnosis, no, (%) 8819 
(46%) 

2556 
(40%) 

8072 
(58%) 

26,435 
(57%) 

8372 
(45%) 

5527 
(40%) 

4806 
(58%) 

21,429 
(57%) 

28,152 
(45%) 

13,366 
(40%) 

9190 
(59%) 

65,013 
(56%) 

Medication, no, (%) 0 (0%) 1137 
(18%) 

0 (0%) 2617 
(6%) 

0 (0%) 1919 
(14%) 

0 (0%) 2686 
(7%) 

0 (0%) 4360 
(13%) 

0 (0%) 5834 
(5%) 

Lab Results, no, (%) 17,449 
(91%) 

6305 
(98%) 

12,919 
(93%) 

44,084 
(95%) 

16,873 
(91%) 

13,472 
(98%) 

7671 
(93%) 

35,985 
(95%) 

56,312 
(90%) 

32,473 
(98%) 

14,464 
(93%) 

111,049 
(95%) 

Vital Sign, no, (%) 13,753 
(72%) 

3699 
(57%) 

0 
(0%) 

18,130 
(39%) 

13,168 
(71%) 

7201 
(52%) 

0 
(0%) 

14,911 
(40%) 

44,541 
(71%) 

17,262 
(52%) 

0 
(0%) 

45,507 
(39%) 

Named Clinical Entities, no, 
(%) 

18,966 
(99%) 

6277 
(97%) 

11,183 
(81%) 

36,018 
(78%) 

18,364 
(99%) 

13,367 
(97%) 

6622 
(80%) 

29,381 
(78%) 

61,938 
(99%) 

27,879 
(84%) 

12,261 
(79%) 

90,470 
(78%)  
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Appendix G:. Model architecture and hyperparameters 

The prediction models are trained with the same model architecture: 
we use Transformer (Tensor2Tensor) [24] to train a binary classification 
model for clinical risk prediction. Our prediction model is built with the 
transformer_small model with text2class problem. The encoder is built 
with two transformer layers, with hidden size 256, and 4 attention 
heads. Since we directly generate the predicted binary class as the only 
output, there is no decoder required. We build our own vocabulary, 
which consists of the feature values from the records in the training set. 
During the prediction, e.g. on the test set, those feature values that are 
not contained in our vocabulary are discarded. We use Adagrad as the 
optimizer, and we train our prediction models with 80,000 training 
steps, roughly 2 epochs; the number of steps are slightly adjusted based 
on the number of training samples in different use cases. 
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